Vector-valued multivariate conditional value-at-risk
نویسندگان
چکیده
منابع مشابه
Optimization with Multivariate Conditional Value-at-Risk Constraints
For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers’ risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to ...
متن کاملMultivariate Fréchet copulas and conditional value-at-risk
Based on the method of copulas, we construct a parametric family of multivariate distributions using mixtures of independent conditional distributions. The new family of multivariate copulas is a convex combination of products of independent and comonotone subcopulas. It fulfills the four most desirable properties that a multivariate statistical model should satisfy. In particular, the bivariat...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Conditional Value at Risk
We suggest a new methodology to overcome several well-known deeciencies of Value at Risk computations. Our approach mainly addresses two aspects of Value at Risk: rst, to avoid potentially disastrous clustering in predicted tail events we derive a new approach to accurately estimating the conditional distribution of asset returns using maximum entropy densities. Second, by the very nature of th...
متن کاملν-Support Vector Machine as Conditional Value-at-Risk Minimization
The ν-support vector classification (ν-SVC) algorithm was shown to work well and provide intuitive interpretations, e.g., the parameter ν roughly specifies the fraction of support vectors. Although ν corresponds to a fraction, it cannot take the entire range between 0 and 1 in its original form. This problem was settled by a non-convex extension of ν-SVC and the extended method was experimental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research Letters
سال: 2018
ISSN: 0167-6377
DOI: 10.1016/j.orl.2018.02.006